Application Meta
jModeltest 2.1
(c) 2011-onwards D. Darriba, G.L. Taboada, R. Doallo and D. Posada,(1) Department of Biochemistry, Genetics and Immunology
University of Vigo, 36310 Vigo, Spain.
(2) Department of Electronics and Systems
University of A Coruna, 15071 A Coruna, Spain.
e-mail: ddarriba@udc.es, dposada@uvigo.es
${date}
${system}
Citation: | Darriba D, Taboada GL, Doallo R and Posada D. 2012. "jModelTest 2: more models, new heuristics and parallel computing". Nature Methods 9, 772. |
Settings
Arguments = ${arguments}Input Alignment: "${alignName}"
NumTaxa = ${numTaxa}
Length = ${seqLength}
Phyml version = ${phymlVersion}
Phyml binary = ${phymlBinary}
Candidate models = ${candidateModels}
number of substitution schemes = ${substSchemes}
<#if includeF == 1> including models with equal/unequal base frequencies (+F)
<#else> including only models with equal base frequencies
#if> <#if includeI == 1> including models with/without a proportion of invariable sites (+I)
<#else> including only models without a proportion of invariable sites
#if> <#if includeG == 1> including models with/without rate variation among sites (+G) (nCat = ${numCat})
<#else> including only models without rate variation among sites
#if> Optimized free parameters (K) = ${freeParameters}
Base tree for likelihood calculations = ${baseTree}
<#if userTreeDef == 1> User tree (${userTreeFilename}) = ${userTree}
#if> Tree topology search operation = ${searchAlgorithm}
Model Optimization Results
ID | Name | Partition | -lnL | p | fA | fC | fG | fT | ti/tv | R(a) | R(b) | R(c) | R(d) | R(e) | R(f) | p-inv | shape |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
${model.index} | ${model.name} | ${model.partition} | ${model.lnl} | ${model.k} | ${model.fA} | ${model.fC} | ${model.fG} | ${model.fT} | ${model.titv} | ${model.rA} | ${model.rB} | ${model.rC} | ${model.rD} | ${model.rE} | ${model.rF} | ${model.pInv} | ${model.shape} |
There are ${numberOfTopologies} different topologies. The following table shows the models supporting each topology and the rank according to each Information Criterion, as well as Robinson-Foulds and Euclidean distances with the tree of the best-fit model.
ID | Models | Topology | AIC | BIC | AICc | DT | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
${topology.index} |
${topology.models}
|
RANK | <#if isAIC == 1>${topology.aicRank} | <#else>- | #if> <#if isBIC == 1>${topology.bicRank} | <#else>- | #if> <#if isAICc == 1>${topology.aiccRank} | <#else>- | #if> <#if isDT == 1>${topology.dtRank} | <#else>- | #if>|
Weight | <#if isAIC == 1>${topology.aicWeight} | <#else>- | #if> <#if isBIC == 1>${topology.bicWeight} | <#else>- | #if> <#if isAICc == 1>${topology.aiccWeight} | <#else>- | #if> <#if isDT == 1>${topology.dtWeight} | <#else>- | #if>|||
RF | <#if isAIC == 1>${topology.aicRF} | <#else>- | #if> <#if isBIC == 1>${topology.bicRF} | <#else>- | #if> <#if isAICc == 1>${topology.aiccRF} | <#else>- | #if> <#if isDT == 1>${topology.dtRF} | <#else>- | #if>|||
AVG Distance | <#if isAIC == 1>${topology.aicAvgDistance} | <#else>- | #if> <#if isBIC == 1>${topology.bicAvgDistance} | <#else>- | #if> <#if isAICc == 1>${topology.aiccAvgDistance} | <#else>- | #if> <#if isDT == 1>${topology.dtAvgDistance} | <#else>- | #if>|||
Distance VAR | <#if isAIC == 1>${topology.aicVarDistance} | <#else>- | #if> <#if isBIC == 1>${topology.bicVarDistance} | <#else>- | #if> <#if isAICc == 1>${topology.aiccVarDistance} | <#else>- | #if> <#if isDT == 1>${topology.dtVarDistance} | <#else>- | #if>
AIC Selection Results
Model selected
Model | ${bestAicModel.name} | ||
---|---|---|---|
partition | ${bestAicModel.partition} | ||
-lnL | ${bestAicModel.lnl} | ||
K | ${bestAicModel.k} | ||
freqA | ${bestAicModel.fA} | R(a) | ${bestAicModel.rA} |
freqC | ${bestAicModel.fC} | R(b) | ${bestAicModel.rB} |
freqG | ${bestAicModel.fG} | R(c) | ${bestAicModel.rC} |
freqT | ${bestAicModel.fT} | R(d) | ${bestAicModel.rD} |
ti/tv | ${bestAicModel.titv} | R(e) | ${bestAicModel.rE} |
R(f) | ${bestAicModel.rF} | ||
p-inv | ${bestAicModel.pInv} | gamma | ${bestAicModel.shape} |
Model | -lnL | K | AIC | delta | weight | cumWeight |
---|---|---|---|---|---|---|
${model.name} | ${model.lnl} | ${model.k} | ${model.value} | ${model.delta} | ${model.weight} | ${model.cumWeight} |
-lnL: | negative log likelihod |
K: | number of estimated parameters |
AIC: | Akaike Information Criterion |
delta: | AIC difference |
weight: | AIC weight |
cumWeight: | cumulative AIC weight |
Confidence interval
There are ${aicConfidenceCount} models in the ${confidenceInterval}% confidence interval:
${aicConfidenceList}
Relative Robinson-Foulds distances histogram from the different topologies to ${bestAicModel.name} topology.
PAUP block
${aicPaup} #if> <#if doAICAveragedPhylogeny == 1>Model Averaged Phylogeny
Selection criterion | AIC |
---|---|
Confidence interval | ${confidenceInterval}% |
Consensus type | ${consensusType} |
AICc Selection Results
Model selected
Model | ${bestAiccModel.name} | ||
---|---|---|---|
partition | ${bestAiccModel.partition} | ||
-lnL | ${bestAiccModel.lnl} | ||
K | ${bestAiccModel.k} | ||
freqA | ${bestAiccModel.fA} | R(a) | ${bestAiccModel.rA} |
freqC | ${bestAiccModel.fC} | R(b) | ${bestAiccModel.rB} |
freqG | ${bestAiccModel.fG} | R(c) | ${bestAiccModel.rC} |
freqT | ${bestAiccModel.fT} | R(d) | ${bestAiccModel.rD} |
ti/tv | ${bestAiccModel.titv} | R(e) | ${bestAiccModel.rE} |
R(f) | ${bestAiccModel.rF} | ||
p-inv | ${bestAiccModel.pInv} | gamma | ${bestAiccModel.shape} |
Model | -lnL | K | AICc | delta | weight | cumWeight |
---|---|---|---|---|---|---|
${model.name} | ${model.lnl} | ${model.k} | ${model.value} | ${model.delta} | ${model.weight} | ${model.cumWeight} |
-lnL: | negative log likelihod |
K: | number of estimated parameters |
AICc: | Corrected Akaike Information Criterion |
delta: | AICc difference |
weight: | AICc weight |
cumWeight: | cumulative AICc weight |
Confidence interval
There are ${aiccConfidenceCount} models in the ${confidenceInterval}% confidence interval:
${aiccConfidenceList}
Relative Robinson-Foulds distances histogram from the different topologies to ${bestAiccModel.name} topology.
PAUP block
${aiccPaup} #if> <#if doAICcAveragedPhylogeny == 1>Model Averaged Phylogeny
Selection criterion | AICc |
---|---|
Confidence interval | ${confidenceInterval}% |
Consensus type | ${consensusType} |
BIC Selection Results
Model selected
Model | ${bestBicModel.name} | ||
---|---|---|---|
partition | ${bestBicModel.partition} | ||
-lnL | ${bestBicModel.lnl} | ||
K | ${bestBicModel.k} | ||
freqA | ${bestBicModel.fA} | R(a) | ${bestBicModel.rA} |
freqC | ${bestBicModel.fC} | R(b) | ${bestBicModel.rB} |
freqG | ${bestBicModel.fG} | R(c) | ${bestBicModel.rC} |
freqT | ${bestBicModel.fT} | R(d) | ${bestBicModel.rD} |
ti/tv | ${bestBicModel.titv} | R(e) | ${bestBicModel.rE} |
R(f) | ${bestBicModel.rF} | ||
p-inv | ${bestBicModel.pInv} | gamma | ${bestBicModel.shape} |
Model | -lnL | K | BIC | delta | weight | cumWeight |
---|---|---|---|---|---|---|
${model.name} | ${model.lnl} | ${model.k} | ${model.value} | ${model.delta} | ${model.weight} | ${model.cumWeight} |
-lnL: | negative log likelihod |
K: | number of estimated parameters |
BIC: | Bayesian Information Criterion |
delta: | BIC difference |
weight: | BIC weight |
cumWeight: | cumulative BIC weight |
Confidence interval
There are ${bicConfidenceCount} models in the ${confidenceInterval}% confidence interval:
${bicConfidenceList}
Relative Robinson-Foulds distances histogram from the different topologies to ${bestBicModel.name} topology.
PAUP block
${bicPaup} #if> <#if doBICAveragedPhylogeny == 1>Model Averaged Phylogeny
Selection criterion | BIC |
---|---|
Confidence interval | ${confidenceInterval}% |
Consensus type | ${consensusType} |
Decision Theory Selection Results
Model selected
Model | ${bestDtModel.name} | ||
---|---|---|---|
partition | ${bestDtModel.partition} | ||
-lnL | ${bestDtModel.lnl} | ||
K | ${bestDtModel.k} | ||
freqA | ${bestDtModel.fA} | R(a) | ${bestDtModel.rA} |
freqC | ${bestDtModel.fC} | R(b) | ${bestDtModel.rB} |
freqG | ${bestDtModel.fG} | R(c) | ${bestDtModel.rC} |
freqT | ${bestDtModel.fT} | R(d) | ${bestDtModel.rD} |
ti/tv | ${bestDtModel.titv} | R(e) | ${bestDtModel.rE} |
R(f) | ${bestDtModel.rF} | ||
p-inv | ${bestDtModel.pInv} | gamma | ${bestDtModel.shape} |
Model | -lnL | K | DT | delta | weight | cumWeight |
---|---|---|---|---|---|---|
${model.name} | ${model.lnl} | ${model.k} | ${model.value} | ${model.delta} | ${model.weight} | ${model.cumWeight} |
-lnL: | negative log likelihod |
K: | number of estimated parameters |
DT: | Akaike Information Criterion |
delta: | DT difference |
weight: | DT weight |
cumWeight: | cumulative DT weight |
Confidence interval
There are ${dtConfidenceCount} models in the ${confidenceInterval}% confidence interval:
${dtConfidenceList}
Relative Robinson-Foulds distances histogram from the different topologies to ${bestDtModel.name} topology.
PAUP block
${dtPaup} #if> <#if doDTAveragedPhylogeny == 1>Model Averaged Phylogeny
Selection criterion | DT |
---|---|
Confidence interval | ${confidenceInterval}% |
Consensus type | ${consensusType} |