We compute nonminimal resolution F of the carpet of type (a,b) over a finite prime field, Lift this to a resolution over ZZ, introduce the fine grading, grep the various blocks of the crucial map in the a-th strand, compute their determinants and return their product.
i1 : a=4,b=4 o1 = (4, 4) o1 : Sequence |
i2 : d=carpetDet(a,b) -- 0.00476851 seconds elapsed -- 0.0118734 seconds elapsed -- 0.000188891 seconds elapsed -- 0.000109545 seconds elapsed -- 0.000103085 seconds elapsed -- 0.000105866 seconds elapsed -- 0.000100926 seconds elapsed -- 0.000108516 seconds elapsed -- 0.000120394 seconds elapsed -- 0.000126174 seconds elapsed -- 0.000119144 seconds elapsed -- 0.000116386 seconds elapsed -- 0.000107405 seconds elapsed -- 0.000113066 seconds elapsed -- 0.000109345 seconds elapsed -- 0.000108305 seconds elapsed -- 0.000110595 seconds elapsed -- 0.000100144 seconds elapsed -- 0.000122775 seconds elapsed -- 0.000113614 seconds elapsed -- 0.000138173 seconds elapsed -- 0.000117235 seconds elapsed -- 0.000104176 seconds elapsed -- 0.000099446 seconds elapsed -- 0.000109917 seconds elapsed -- 0.000116245 seconds elapsed -- 0.000102327 seconds elapsed -- 0.000107895 seconds elapsed (number Of blocks, 26) 1 1 1 1 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 1 1 1 1 o2 = 3131031158784 |
i3 : factor d 32 6 o3 = 2 3 o3 : Expression of class Product |
The object carpetDet is a method function.