We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00174476, .000800961) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .00493442, .0346805) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.00539555, .0117969}, {.00498081, .00404285}, {.00541271, .00641974}, ------------------------------------------------------------------------ {.00556372, .00953363}, {.00517449, .0127209}, {.00566724, .012037}, ------------------------------------------------------------------------ {.0054217, .00779326}, {.00564776, .00722855}, {.0042431, .00509799}, ------------------------------------------------------------------------ {.00538415, .00770696}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .00528912500000001 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .00843778129999999 o7 : RR (of precision 53) |
The object testTimeForLLLonSyzygies is a method function with options.