Integral domains¶
- class sage.categories.integral_domains.IntegralDomains(base_category)¶
Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_singleton
The category of integral domains
An integral domain is commutative ring with no zero divisors, or equivalently a commutative domain.
EXAMPLES:
sage: C = IntegralDomains(); C Category of integral domains sage: sorted(C.super_categories(), key=str) [Category of commutative rings, Category of domains] sage: C is Domains().Commutative() True sage: C is Rings().Commutative().NoZeroDivisors() True
- class ElementMethods¶
Bases:
object