Class CheckAttributeSelection

  • All Implemented Interfaces:
    OptionHandler, RevisionHandler

    public class CheckAttributeSelection
    extends CheckScheme
    Class for examining the capabilities and finding problems with attribute selection schemes. If you implement an attribute selection using the WEKA.libraries, you should run the checks on it to ensure robustness and correct operation. Passing all the tests of this object does not mean bugs in the attribute selection don't exist, but this will help find some common ones.

    Typical usage:

    java weka.attributeSelection.CheckAttributeSelection -W ASscheme_name -- ASscheme_options

    CheckAttributeSelection reports on the following:

    • Scheme abilities
      • Possible command line options to the scheme
      • Whether the scheme can predict nominal, numeric, string, date or relational class attributes.
      • Whether the scheme can handle numeric predictor attributes
      • Whether the scheme can handle nominal predictor attributes
      • Whether the scheme can handle string predictor attributes
      • Whether the scheme can handle date predictor attributes
      • Whether the scheme can handle relational predictor attributes
      • Whether the scheme can handle multi-instance data
      • Whether the scheme can handle missing predictor values
      • Whether the scheme can handle missing class values
      • Whether a nominal scheme only handles 2 class problems
      • Whether the scheme can handle instance weights
    • Correct functioning
      • Correct initialisation during search (i.e. no result changes when search is performed repeatedly)
      • Whether the scheme alters the data pased to it (number of instances, instance order, instance weights, etc)
    • Degenerate cases
      • building scheme with zero instances
      • all but one predictor attribute values missing
      • all predictor attribute values missing
      • all but one class values missing
      • all class values missing
    Running CheckAttributeSelection with the debug option set will output the training dataset for any failed tests.

    The weka.attributeSelection.AbstractAttributeSelectionTest uses this class to test all the schemes. Any changes here, have to be checked in that abstract test class, too.

    Valid options are:

     -D
      Turn on debugging output.
     -S
      Silent mode - prints nothing to stdout.
     -N <num>
      The number of instances in the datasets (default 20).
     -nominal <num>
      The number of nominal attributes (default 2).
     -nominal-values <num>
      The number of values for nominal attributes (default 1).
     -numeric <num>
      The number of numeric attributes (default 1).
     -string <num>
      The number of string attributes (default 1).
     -date <num>
      The number of date attributes (default 1).
     -relational <num>
      The number of relational attributes (default 1).
     -num-instances-relational <num>
      The number of instances in relational/bag attributes (default 10).
     -words <comma-separated-list>
      The words to use in string attributes.
     -word-separators <chars>
      The word separators to use in string attributes.
     -eval name [options]
      Full name and options of the evaluator analyzed.
      eg: weka.attributeSelection.CfsSubsetEval
     -search name [options]
      Full name and options of the search method analyzed.
      eg: weka.attributeSelection.Ranker
     -test <eval|search>
      The scheme to test, either the evaluator or the search method.
      (Default: eval)
     
     Options specific to evaluator weka.attributeSelection.CfsSubsetEval:
     
     -M
      Treat missing values as a seperate value.
     -L
      Don't include locally predictive attributes.
     
     Options specific to search method weka.attributeSelection.Ranker:
     
     -P <start set>
      Specify a starting set of attributes.
      Eg. 1,3,5-7.
      Any starting attributes specified are
      ignored during the ranking.
     -T <threshold>
      Specify a theshold by which attributes
      may be discarded from the ranking.
     -N <num to select>
      Specify number of attributes to select
    Version:
    $Revision: 4783 $
    Author:
    Len Trigg (trigg@cs.waikato.ac.nz), FracPete (fracpete at waikato dot ac dot nz)
    See Also:
    TestInstances
    • Constructor Detail

      • CheckAttributeSelection

        public CheckAttributeSelection()
    • Method Detail

      • listOptions

        public java.util.Enumeration listOptions()
        Returns an enumeration describing the available options.
        Specified by:
        listOptions in interface OptionHandler
        Overrides:
        listOptions in class CheckScheme
        Returns:
        an enumeration of all the available options.
      • setOptions

        public void setOptions​(java.lang.String[] options)
                        throws java.lang.Exception
        Parses a given list of options.

        Valid options are:

         -D
          Turn on debugging output.
         -S
          Silent mode - prints nothing to stdout.
         -N <num>
          The number of instances in the datasets (default 20).
         -nominal <num>
          The number of nominal attributes (default 2).
         -nominal-values <num>
          The number of values for nominal attributes (default 1).
         -numeric <num>
          The number of numeric attributes (default 1).
         -string <num>
          The number of string attributes (default 1).
         -date <num>
          The number of date attributes (default 1).
         -relational <num>
          The number of relational attributes (default 1).
         -num-instances-relational <num>
          The number of instances in relational/bag attributes (default 10).
         -words <comma-separated-list>
          The words to use in string attributes.
         -word-separators <chars>
          The word separators to use in string attributes.
         -eval name [options]
          Full name and options of the evaluator analyzed.
          eg: weka.attributeSelection.CfsSubsetEval
         -search name [options]
          Full name and options of the search method analyzed.
          eg: weka.attributeSelection.Ranker
         -test <eval|search>
          The scheme to test, either the evaluator or the search method.
          (Default: eval)
         
         Options specific to evaluator weka.attributeSelection.CfsSubsetEval:
         
         -M
          Treat missing values as a seperate value.
         -L
          Don't include locally predictive attributes.
         
         Options specific to search method weka.attributeSelection.Ranker:
         
         -P <start set>
          Specify a starting set of attributes.
          Eg. 1,3,5-7.
          Any starting attributes specified are
          ignored during the ranking.
         -T <threshold>
          Specify a theshold by which attributes
          may be discarded from the ranking.
         -N <num to select>
          Specify number of attributes to select
        Specified by:
        setOptions in interface OptionHandler
        Overrides:
        setOptions in class CheckScheme
        Parameters:
        options - the list of options as an array of strings
        Throws:
        java.lang.Exception - if an option is not supported
      • getOptions

        public java.lang.String[] getOptions()
        Gets the current settings of the CheckAttributeSelection.
        Specified by:
        getOptions in interface OptionHandler
        Overrides:
        getOptions in class CheckScheme
        Returns:
        an array of strings suitable for passing to setOptions
      • doTests

        public void doTests()
        Begin the tests, reporting results to System.out
        Specified by:
        doTests in class CheckScheme
      • setEvaluator

        public void setEvaluator​(ASEvaluation value)
        Set the evaluator to test.
        Parameters:
        value - the evaluator to use.
      • getEvaluator

        public ASEvaluation getEvaluator()
        Get the current evaluator
        Returns:
        the current evaluator
      • setSearch

        public void setSearch​(ASSearch value)
        Set the search method to test.
        Parameters:
        value - the search method to use.
      • getSearch

        public ASSearch getSearch()
        Get the current search method
        Returns:
        the current search method
      • setTestEvaluator

        public void setTestEvaluator​(boolean value)
        Sets whether the evaluator or the search method is being tested.
        Parameters:
        value - if true then the evaluator will be tested
      • getTestEvaluator

        public boolean getTestEvaluator()
        Gets whether the evaluator is being tested or the search method.
        Returns:
        true if the evaluator is being tested
      • getRevision

        public java.lang.String getRevision()
        Returns the revision string.
        Returns:
        the revision
      • main

        public static void main​(java.lang.String[] args)
        Test method for this class
        Parameters:
        args - the commandline parameters