
MATIO

User Manual
for version 1.5.3

January 2016

Christopher C. Hulbert

Copyright (C) 2011-2016 Christopher C. Hulbert. All rights reserved.

Redistribution and use in source (texinfo) and ’compiled’ forms (HTML, PDF,

PostScript, RTF and so forth) with or without modification, are permitted

provided that the following conditions are met:

1. Redistributions of source code (texinfo) must retain the above copyright

notice, this list of conditions and the following disclaimer as the

first lines of this file unmodified.

2. Redistributions in compiled form (PDF, PostScript, RTF and other

formats) must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

THIS DOCUMENTATION IS PROVIDED BY CHRISTOPHER C. HULBERT "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL CHRISTOPHER C. HULBERT OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF

THE POSSIBILITY OF SUCH DAMAGE.

i

Table of Contents

1 Introduction . 1
1.1 About and Licensing . 1
1.2 Incompatible Changes from 1.3 . 1

1.2.1 Type Change for Dimensions Array . 2
1.2.2 Removed Preprocessor Flag to Conserve Memory 2
1.2.3 Renamed Structure Field Lookup Enumerations 2
1.2.4 Memory Conservation with Cells and Structures 2

2 Quick Start . 3
2.1 Opening and Creating MAT Files . 3
2.2 Reading Variables in a MAT File . 4

2.2.1 Reading a Variable by Name . 4
2.2.2 Iterating Over Variables in a MAT File . 5

2.3 Writing Variables . 6
2.3.1 Writing Numeric Arrays . 6
2.3.2 Writing Cell Arrays . 7
2.3.3 Writing Structure Arrays . 9

3 Building matio . 11
3.1 Quick Build Guide . 11
3.2 Configure Options . 11
3.3 Visual Studio . 12
3.4 Testsuite . 12

4 MATLAB Variable Structure 13
4.1 Variable Information . 13

4.1.1 Sparse Matrix Variables . 13
4.1.2 Structure Variables . 13
4.1.3 Cell Variables . 14

Chapter 1: Introduction 1

1 Introduction

1.1 About and Licensing

Thematio software contains a library for reading and writing MATLABMAT files. Thema-
tio library (libmatio) is the primary interface for creating/opening MAT files, and writing/
reading variables.

This matio software is provided with the Simplified BSD License reproduced below. The
license allows for commercial, proprietary, and open source derivative works.

Copyright 2011-2016 Christopher C. Hulbert. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY CHRISTOPHER C. HULBERT ‘‘AS IS’’ AND ANY EXPRESS

OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENT SHALL CHRISTOPHER C. HULBERT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.2 Incompatible Changes from 1.3

This version has changes that break compatibility with the 1.3 versions of the matio soft-
ware. This section lists these changes and how existing code should be modified to handle
these changes.

1. dims field of matvar t structure changed to size t *

2. MEM CONSERVE preprocessor definition removed

3. BY NAME and BY INDEX renamed

4. Added MAT_ prefix to enumerations of matio_compression

5. Changed name of structure for complex split-format data from struct ComplexSplit

to struct mat_complex_split_t

6. Changed name of sparse data structure from sparse_t to mat_sparse_t.

7. Changed meaning of memory conservation for cell arrays and structures

2 MATIO

Each of these changes are described in the remaining sections, and as necessary include
recommendations to upgrade existing code for compatibility with this version.

1.2.1 Type Change for Dimensions Array

The existing dims field of the matvar_t structure was an int * which limited the maximum
size of a dimension to 231. In version 1.5, the type was changed to size_t * which allows a
variable of length 231 on 32-bit systems, but 264−1 on 64-bit system. To upgrade to version
1.5, all existing code should ensure the use of dims allows for size_t, and that any use of
the Mat_VarCreate function passes an array of type size_t and not int. Not upgrading
to size_t is likely to produce segmentation faults on systems where sizeof(size_t) !=

sizeof(int).

1.2.2 Removed Preprocessor Flag to Conserve Memory

Previous versions of the matio library had a preprocessor macro MEM_CONSERVE that was
passed as an option to Mat_VarCreate to tell the library to only store a pointer to the data
variable instead of creating a copy of the data. Copies of scalars or small arrays are not
critical, but for large arrays is necessary. In version 1.5, this macro has been changed to the
enumeration value MAT_F_DONT_COPY_DATA. A quick search/replace can quickly upgrade
any references to MEM_CONSERVE. Alternatively, since MAT_F_DONT_COPY_DATA has the same
value as MEM_CONSERVE, software using matio can simply define MEM_CONSERVE to 1.

1.2.3 Renamed Structure Field Lookup Enumerations

The BY_NAME and BY_INDEX enumerations are used by Mat_VarGetStructField to indicate
if the field is retrieved by its name, or by its index in the list of fields. To bring these into a
matio namespace and hopefully avoid conflicts, these have been renamed to MAT_BY_NAME

and MAT_BY_INDEX. A quick search/replace operation should be able to correct existing
code that uses the old names.

1.2.4 Memory Conservation with Cells and Structures

Previous versions ofmatio would still free fields of structures and elements of cell arrays even
if created with memory conservation flag set. In the latest version of matio, the fields/cell
elements are not free’d if the structure was created with the MAT_F_DONT_COPY_DATA flag.
This is useful if the fields/elements are referenced by another variable such as the case when
they are indices of a larger array (i.e. Mat_VarGetStructs, Mat_VarGetStructsLinear).

Chapter 2: Quick Start 3

2 Quick Start

2.1 Opening and Creating MAT Files

This section will show how to create a new MAT file, open an existing MAT file for read
and read/write access, and close the MAT file.

The key functions in working with MAT files include:

• Mat Open,

• Mat CreateVer, and

• Mat Close.

The following example program shows how to open a MAT file where the filename is the
first argument to the program.

#include <stdlib.h>

#include <stdio.h>

#include "matio.h"

int

main(int argc,char **argv)

{

mat_t *matfp;

matfp = Mat_Open(argv[1],MAT_ACC_RDONLY);

if (NULL == matfp) {

fprintf(stderr,"Error opening MAT file \"%s\"!\n",argv[1]);

return EXIT_FAILURE;

}

Mat_Close(matfp);

return EXIT_SUCCESS;

}

The Mat_CreateVer creates a new MAT file (or overwrites and existing file) with a
specific version. The matio library can write version 5 MAT files, version 5 files with
variable compression (if built with zlib), and an HDF5 format MAT file introduced in
MATLAB version 7.3. The format of the MAT file is specified by the third argument. The
short example below creates a version 5 file named matfile5.mat and an HDF5 format MAT
file named matfile73.mat.

#include <stdlib.h>

#include <stdio.h>

#include "matio.h"

int

main(int argc,char **argv)

{

mat_t *matfp;

4 MATIO

matfp = Mat_CreateVer("matfile5.mat",NULL,MAT_FT_MAT5);

if (NULL == matfp) {

fprintf(stderr,"Error creating MAT file \"matfile5.mat\"!\n");

return EXIT_FAILURE;

}

Mat_Close(matfp);

matfp = Mat_CreateVer("matfile73.mat",NULL,MAT_FT_MAT73);

if (NULL == matfp) {

fprintf(stderr,"Error creating MAT file \"matfile73.mat\"!\n");

return EXIT_FAILURE;

}

Mat_Close(matfp);

return EXIT_SUCCESS;

}

2.2 Reading Variables in a MAT File

This section introduces the functions used to read variables from a MAT file. The matio li-
brary has functions for reading variable information only (e.g. name, rank, dimensions, type,
etc.), reading information and data, and reading data from previously obtained informa-
tion. Reading information and data in separate function calls provides several conveniences
including:

• Querying the names of variables in a file without reading data,

• Reading only some fields of a structure or elements of a cell array, and

• other actions where the variable data is not needed.

2.2.1 Reading a Variable by Name

If the name if the variable is known, the Mat_VarRead and Mat_VarReadInfo functions can
be used. The Mat_VarRead function reads both the information and data for a variable,
and the Mat_VarReadInfo reads information only. The short example below reads a named
variable from a MAT file, and checks that the variable is a complex double-precision vector.

#include <stdlib.h>

#include <stdio.h>

#include "matio.h"

int

main(int argc,char **argv)

{

mat_t *matfp;

matvar_t *matvar;

matfp = Mat_Open(argv[1],MAT_ACC_RDONLY);

if (NULL == matfp) {

Chapter 2: Quick Start 5

fprintf(stderr,"Error opening MAT file \"%s\"!\n",argv[1]);

return EXIT_FAILURE;

}

matvar = Mat_VarReadInfo(matfp,"x");

if (NULL == matvar) {

fprintf(stderr,"Variable ’x’ not found, or error "

"reading MAT file\n");

} else {

if (!matvar->isComplex)

fprintf(stderr,"Variable ’x’ is not complex!\n");

if (matvar->rank != 2 ||

(matvar->dims[0] > 1 && matvar->dims[1] > 1))

fprintf(stderr,"Variable ’x’ is not a vector!\n");

Mat_VarFree(matvar);

}

Mat_Close(matfp);

return EXIT_SUCCESS;

}

2.2.2 Iterating Over Variables in a MAT File

For some applications, the name of the variable may not be known ahead of time. For
example, if the user needs to select a variable of interest, a list of variables should be
obtained. Like reading a variable by name, there are two functions that will read the
next variable in the MAT file: Mat_VarReadNext and Mat_VarReadNextInfo. The short
example shown below opens a MAT file, and iterates over the variables in the file printing
the variable name.

#include <stdlib.h>

#include <stdio.h>

#include "matio.h"

int

main(int argc,char **argv)

{

mat_t *matfp;

matvar_t *matvar;

matfp = Mat_Open(argv[1],MAT_ACC_RDONLY);

if (NULL == matfp) {

fprintf(stderr,"Error opening MAT file \"%s\"!\n",argv[1]);

return EXIT_FAILURE;

}

while ((matvar = Mat_VarReadNextInfo(matfp)) != NULL) {

printf("%s\n",matvar->name);

6 MATIO

Mat_VarFree(matvar);

matvar = NULL;

}

Mat_Close(matfp);

return EXIT_SUCCESS;

}

2.3 Writing Variables

A variable can be saved in a MAT file using the Mat_VarWrite function which has three
arguments: the MAT file to write the variable to, a MATLAB variable structure, and a
third option used to control write options. The variable structure can be filled in manually,
or created from helper routines such as Mat_VarCreate. Note that MATLAB, and thus
matio, has no concept of a rank 1 array (i.e. vector). The minimum rank of an array is 2
(i.e. matrix). A vector is simply a matrix with one dimension length of 1.

2.3.1 Writing Numeric Arrays

Numeric arrays can be either real or complex. Complex arrays are encapsulated in the
struct mat_complex_split_t data structure that contains a pointer to the real part of
the data, and a pointer to the imaginary part of the data. The example program below
writes two real variables x and y, and one complex variable z whose real and imaginary
parts are the x and y variables respectively. Note the MAT_F_COMPLEX argument passed to
Mat_VarCreate for z to indicate a complex variable.

#include <stdlib.h>

#include <stdio.h>

#include "matio.h"

int

main(int argc,char **argv)

{

mat_t *matfp;

matvar_t *matvar;

size_t dims[2] = {10,1};

double x[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10},

y[10] = {11,12,13,14,15,16,17,18,19,20};

struct mat_complex_split_t z = {x,y};

matfp = Mat_CreateVer("test.mat",NULL,MAT_FT_DEFAULT);

if (NULL == matfp) {

fprintf(stderr,"Error creating MAT file \"test.mat\"\n");

return EXIT_FAILURE;

}

matvar = Mat_VarCreate("x",MAT_C_DOUBLE,MAT_T_DOUBLE,2,dims,x,0);

if (NULL == matvar) {

fprintf(stderr,"Error creating variable for ’x’\n");

Chapter 2: Quick Start 7

} else {

Mat_VarWrite(matfp,matvar,COMPRESSION_NONE);

Mat_VarFree(matvar);

}

matvar = Mat_VarCreate("y",MAT_C_DOUBLE,MAT_T_DOUBLE,2,dims,y,0);

if (NULL == matvar) {

fprintf(stderr,"Error creating variable for ’y’\n");

} else {

Mat_VarWrite(matfp,matvar,COMPRESSION_NONE);

Mat_VarFree(matvar);

}

matvar = Mat_VarCreate("z",MAT_C_DOUBLE,MAT_T_DOUBLE,2,dims,&z,

MAT_F_COMPLEX);

if (NULL == matvar) {

fprintf(stderr,"Error creating variable for ’z’\n");

} else {

Mat_VarWrite(matfp,matvar,COMPRESSION_NONE);

Mat_VarFree(matvar);

}

Mat_Close(matfp);

return EXIT_SUCCESS;

}

2.3.2 Writing Cell Arrays

Cell arrays are multidimensional arrays whose elements can be any class of variables (e.g.
numeric, structure, cell arrays, etc.). To create a cell array, pass an array of matvar_
t *. Detailed information on the MATLAB variable structure for cell-arrays is given in
Section 4.1.3 [Cell Variables], page 14. The following example shows how to create a 3x1
cell array.

#include <stdlib.h>

#include <stdio.h>

#include "matio.h"

int

main(int argc,char **argv)

{

mat_t *matfp;

matvar_t *cell_array, *cell_element;

size_t dims[2] = {10,1};

double x[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10},

y[10] = {11,12,13,14,15,16,17,18,19,20};

struct mat_complex_split_t z = {x,y};

8 MATIO

matfp = Mat_CreateVer("test.mat",NULL,MAT_FT_DEFAULT);

if (NULL == matfp) {

fprintf(stderr,"Error creating MAT file \"test.mat\"\n");

return EXIT_FAILURE;

}

dims[0] = 3;

dims[1] = 1;

cell_array = Mat_VarCreate("a",MAT_C_CELL,MAT_T_CELL,2,dims,NULL,0);

if (NULL == cell_array) {

fprintf(stderr,"Error creating variable for ’a’\n");

Mat_Close(matfp);

return EXIT_FAILURE;

}

dims[0] = 10;

dims[1] = 1;

cell_element = Mat_VarCreate(NULL,MAT_C_DOUBLE,MAT_T_DOUBLE,2,dims,x,0);

if (NULL == cell_element) {

fprintf(stderr,"Error creating cell element variable\n");

Mat_VarFree(cell_array);

Mat_Close(matfp);

return EXIT_FAILURE;

}

Mat_VarSetCell(cell_array,0,cell_element);

cell_element = Mat_VarCreate(NULL,MAT_C_DOUBLE,MAT_T_DOUBLE,2,dims,y,0);

if (NULL == cell_element) {

fprintf(stderr,"Error creating cell element variable\n");

Mat_VarFree(cell_array);

Mat_Close(matfp);

return EXIT_FAILURE;

}

Mat_VarSetCell(cell_array,1,cell_element);

cell_element = Mat_VarCreate(NULL,MAT_C_DOUBLE,MAT_T_DOUBLE,2,dims,&z,

MAT_F_COMPLEX);

if (NULL == cell_element) {

fprintf(stderr,"Error creating cell element variable\n");

Mat_VarFree(cell_array);

Mat_Close(matfp);

return EXIT_FAILURE;

}

Mat_VarSetCell(cell_array,2,cell_element);

Mat_VarWrite(matfp,cell_array,MAT_COMPRESSION_NONE);

Mat_VarFree(cell_array);

Chapter 2: Quick Start 9

Mat_Close(matfp);

return EXIT_SUCCESS;

}

2.3.3 Writing Structure Arrays

Structure arrays are multidimensional arrays where each element of the array contains mul-
tiple data items as named fields. The fields of a structure can be accessed by name or
index. A field can be a variable of any type (e.g. numeric, structure, cell arrays, etc.).
The preferred method to create a structure array is using the Mat_VarCreateStruct func-
tion. After creating the structure array, the Mat_VarSetStructFieldByName and Mat_

VarSetStructFieldByIndex functions can be used to set the fields of the structure array
to a variable. The example below shows how to create a 2 x 1 structure array with the
fields x, y, and z.

#include <stdlib.h>

#include <stdio.h>

#include "matio.h"

int

main(int argc,char **argv)

{

mat_t *matfp;

matvar_t *matvar, *field;

size_t dims[2] = {10,1}, struct_dims[2] = {2,1};

double x1[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10},

x2[10] = {11,12,13,14,15,16,17,18,19,20},

y1[10] = {21,22,23,24,25,26,27,28,29,30},

y2[10] = {31,32,33,34,35,36,37,38,39,40};

struct mat_complex_split_t z1 = {x1,y1}, z2 = {x2,y2};

const char *fieldnames[3] = {"x","y","z"};

unsigned nfields = 3;

matfp = Mat_CreateVer("test.mat",NULL,MAT_FT_DEFAULT);

if (NULL == matfp) {

fprintf(stderr,"Error creating MAT file \"test.mat\"\n");

return EXIT_FAILURE;

}

matvar = Mat_VarCreateStruct("a", 2,struct_dims,fieldnames,nfields);

if (NULL == matvar) {

fprintf(stderr,"Error creating variable for ’a’\n");

Mat_Close(matfp);

return EXIT_FAILURE;

}

10 MATIO

/* structure index 0 */

field = Mat_VarCreate(NULL,MAT_C_DOUBLE,MAT_T_DOUBLE,2,dims,x1,0);

Mat_VarSetStructFieldByName(matvar,"x",0,field);

field = Mat_VarCreate(NULL,MAT_C_DOUBLE,MAT_T_DOUBLE,2,dims,y1,0);

Mat_VarSetStructFieldByName(matvar,"y",0,field);

field = Mat_VarCreate(NULL,MAT_C_DOUBLE,MAT_T_DOUBLE,2,dims,&z1,

MAT_F_COMPLEX);

Mat_VarSetStructFieldByName(matvar,"z",0,field);

/* structure index 1 */

field = Mat_VarCreate(NULL,MAT_C_DOUBLE,MAT_T_DOUBLE,2,dims,x2,0);

Mat_VarSetStructFieldByName(matvar,"x",1,field);

field = Mat_VarCreate(NULL,MAT_C_DOUBLE,MAT_T_DOUBLE,2,dims,y2,0);

Mat_VarSetStructFieldByName(matvar,"y",1,field);

field = Mat_VarCreate(NULL,MAT_C_DOUBLE,MAT_T_DOUBLE,2,dims,&z2,

MAT_F_COMPLEX);

Mat_VarSetStructFieldByName(matvar,"z",1,field);

Mat_VarWrite(matfp,matvar,MAT_COMPRESSION_NONE);

Mat_VarFree(matvar);

Mat_Close(matfp);

return EXIT_SUCCESS;

}

Chapter 3: Building matio 11

3 Building matio

3.1 Quick Build Guide

The primary method for building the software is using configure followed by make. After
building, the testsuite can be executed to test the software using make check (See Section 3.4
[Testsuite], page 12. The software can be installed using ’make install’. For example,

$ tar zxf matio-X.Y.Z.tar.gz

$ cd matio-X.Y.Z

$./configure

$ make

$ make check

$ make install

3.2 Configure Options

--enable-mat73=[yes|no]

This flag enables/disables the support for version 7.3 MAT files. The option
only makes sense if built with HDF5 as support for version 7.3 files will be
disabled if HDF5 is not available.

--enable-extended-sparse=yes

Enable extended sparse matrix data types not supported in MATLAB. MAT-
LAB only supports double-precision sparse data. With this flag, matio will read
sparse data with other types (i.e. single-precision and integer types).

--with-matlab=DIR

This option specifies the directory (DIR) with the matlab program. With this
option, the testsuite will check that the MAT files written by matio can be read
into MATLAB (see Section Section 3.4 [Testsuite], page 12 for more information
about the testsuite).

--with-zlib=DIR

This option specifies the prefix where zlib is installed.

--with-hdf5=DIR

This option specifies the prefix where the HDF5 software is installed.

--with-default-file-ver=[4|5|7.3]

This option sets the default MAT file version that will be used when writing.
The default file version is used by the Mat Create macro and the Mat CreateVer
function when MAT FT DEFAULT is used for the version argument.

--with-libdir-suffix=suffix

This option specifies a suffix to apply to library directories when installing and
looking for dependent libraries (i.e. HDF5 and zlib). For example, some multi-
arch Linux distributions install 64-bit libraries into lib64 and 32-bit libraries
into lib.

12 MATIO

3.3 Visual Studio

A visual studio solution is provided as visual studio/matio.sln. The solution is set up to
build a DLL of the matio library (libmatio.dll) and matdump tool in release mode and as-
sumes HDF5 is available in the directory specified by the HDF5 DIR environment variable.
The build was tested with the HDF5 visual studio pre-built Windows binaries including
zlib.

3.4 Testsuite

A testsuite is available when building with the GNU autotools. To run the testsuite, First
configure and build matio. After building run make check to run the testsuite. If matio was
built without zlib, the compressed variable tests will be skipped. If built without HDF5,
the tests for version 7.3 MAT files will be skipped. If the path to the MATLAB application
was not specified (--with-matlab), the write tests will fail if matio cannot read the file and
skip if matio can read the file. The write tests will pass if MATLAB is available and can
also read the file.

To report matio testsuite failures, compress the testsuite.log file in the test sub-directory
of the build directory. Upload the compressed log file along with a bug report (see Section
1.4 for information on reporting bugs).

Chapter 4: MATLAB Variable Structure 13

4 MATLAB Variable Structure

4.1 Variable Information

When a MATLAB variable is read or created, all of the information about the variable (e.g.
name, dimensions, etc.) are stored in the MATLAB variable structure type matvar_t.

name Nul-terminated string that is the name of the variable. The name may be NULL
(e.g. for elements of a cell-array), so the field should be checked prior to use.

rank The number of dimensions of the variable. The minimum rank is 2.

dims An array of the number of elements in each dimensions of the variable.

class_type

Indicates the class of the variable (e.g. double-precision, structure, cell, etc.).

data_type

Indicates the type of the data stored in the data field of the MATLAB variable
structure.

isComplex

is non-zero if the variable is a complex-valued numeric array.

isLogical

is non-zero of the variable should be interpreted as logical (i.e. zero for false,
non-zero for true).

isGlobal is non-zero if the variable should be a global variable. In MATLAB a global
variable is available in all scopes (e.g. base workspace, function, etc.)

4.1.1 Sparse Matrix Variables

If a variable’s class type is sparse, the data field of the MATLAB variable structure is a
pointer to the sparse matrix structure mat_sparse_t. The sparse matrix structure stores
the non-zero elements of the matrix in compressed column format.

4.1.2 Structure Variables

If the MATLAB variable structure’s class_type is MAT_C_STRUCT, the data_type field
should be MAT_T_STRUCT. The data field of the variable structure is an pointer to an array
of matvar_t *. The length of the array is numel × nfields where numel is the number of
elements in the structure array (product of dimensions array), and nfields is the number
of fields in the structure. The order of the variables in the array is first by field, and then
by structure index. For example, for a 2× 1 structure array with 3 fields field1, field2, and
field3, data field of the structure variable is ordered as:

s(1).field1

s(1).field2

s(1).field3

s(2).field1

s(2).field2

s(2).field3

14 MATIO

4.1.3 Cell Variables

If the MATLAB variable structure’s class_type is MAT_C_CELL, the data_type field should
be MAT_T_CELL. The data field of the variable structure is a pointer to an array of matvar_t
*. The length of the array is product of the dimensions array. Each element of the cell
array can be a different type.

	Introduction
	About and Licensing
	Incompatible Changes from 1.3
	Type Change for Dimensions Array
	Removed Preprocessor Flag to Conserve Memory
	Renamed Structure Field Lookup Enumerations
	Memory Conservation with Cells and Structures

	Quick Start
	Opening and Creating MAT Files
	Reading Variables in a MAT File
	Reading a Variable by Name
	Iterating Over Variables in a MAT File

	Writing Variables
	Writing Numeric Arrays
	Writing Cell Arrays
	Writing Structure Arrays

	Building matio
	Quick Build Guide
	Configure Options
	Visual Studio
	Testsuite

	MATLAB Variable Structure
	Variable Information
	Sparse Matrix Variables
	Structure Variables
	Cell Variables

