"""
Build layout for histogram plots
"""
__all__ = ['var_plot_size', 'plot_vars', 'plot_var']
from math import ceil, sqrt
import numpy as np
from matplotlib import pyplot as plt
# Set space between plots in horiz and vert.
H_SPACE = 0.2
V_SPACE = 0.2
# Set top, bottom, left margins.
T_MARGIN = 0.2
B_MARGIN = 0.2
L_MARGIN = 0.2
R_MARGIN = 0.4
# Set desired plot sizes.
TILE_W = 3.0
TILE_H = 2.0
CBAR_WIDTH = 0.75
[docs]def var_plot_size(n):
ncol, nrow = tile_axes_square(n)
# Calculate total width and figure size
plots_width = (TILE_W+H_SPACE)*ncol
figwidth = plots_width + CBAR_WIDTH + L_MARGIN + R_MARGIN
figheight = (TILE_H+V_SPACE)*nrow + T_MARGIN + B_MARGIN
return figwidth, figheight
def _make_var_axes(n):
"""
Build a figure with one axis per parameter,
and one axis (the last one) to contain the colorbar.
Use to make the vars histogram figure.
"""
fig = plt.gcf()
fig.clf()
total_width, total_height = fig.get_size_inches()
ncol, nrow = tile_axes_square(n)
# Calculate dimensions as a faction of figure size.
v_space_f = V_SPACE/total_height
h_space_f = H_SPACE/total_width
t_margin_f = T_MARGIN/total_height
b_margin_f = B_MARGIN/total_height
l_margin_f = L_MARGIN/total_width
top = 1 - t_margin_f+v_space_f
left = l_margin_f
tile_h = (total_height - T_MARGIN - B_MARGIN)/nrow - V_SPACE
tile_w = (total_width - L_MARGIN - R_MARGIN - CBAR_WIDTH)/ncol - H_SPACE
tile_h_f = tile_h/total_height
tile_w_f = tile_w/total_width
# Calculate colorbar location (left, bottom) and colorbar height.
l_cbar_f = l_margin_f + ncol*(tile_w_f+h_space_f)
b_cbar_f = b_margin_f + v_space_f
cbar_w_f = CBAR_WIDTH/total_width
cbar_h_f = 1 - t_margin_f - b_margin_f - v_space_f
cbar_box = [l_cbar_f, b_cbar_f, cbar_w_f, cbar_h_f]
k = 0
for j in range(1, nrow+1):
for i in range(0, ncol):
if k >= n:
break
dims = [left + i*(tile_w_f+h_space_f),
top - j*(tile_h_f+v_space_f),
tile_w_f,
tile_h_f]
ax = fig.add_axes(dims)
ax.set_facecolor('none')
k += 1
fig.add_axes(cbar_box)
#fig.set_size_inches(total_width, total_height)
return fig
def tile_axes_square(n):
"""
Determine number of columns by finding the
next greatest square, then determine number
of rows needed.
"""
cols = int(ceil(sqrt(n)))
rows = int(ceil(n/float(cols)))
return cols, rows
[docs]def plot_vars(draw, all_vstats, **kw):
n = len(all_vstats)
fig = _make_var_axes(n)
cbar = _make_fig_colorbar(draw.logp)
for k, vstats in enumerate(all_vstats):
fig.sca(fig.axes[k])
plot_var(draw, vstats, k, cbar, **kw)
[docs]def plot_var(draw, vstats, var, cbar, nbins=30):
values = draw.points[:, var].flatten()
_make_logp_histogram(values, draw.logp, nbins, vstats.p95_range,
draw.weights, cbar)
_decorate_histogram(vstats)
def _decorate_histogram(vstats):
import pylab
from matplotlib.transforms import blended_transform_factory as blend
l95, h95 = vstats.p95_range
l68, h68 = vstats.p68_range
# Shade things inside 1-sigma
pylab.axvspan(l68, h68, color='gold', alpha=0.5, zorder=-1)
# build transform with x=data, y=axes(0,1)
ax = pylab.gca()
transform = blend(ax.transData, ax.transAxes)
def marker(symbol, position):
if position < l95:
symbol, position, ha = '<'+symbol, l95, 'left'
elif position > h95:
symbol, position, ha = '>'+symbol, h95, 'right'
else:
symbol, position, ha = symbol, position, 'center'
pylab.text(position, 0.95, symbol, va='top', ha=ha,
transform=transform, zorder=3, color='g')
#pylab.axvline(v)
marker('|', vstats.median)
marker('E', vstats.mean)
marker('*', vstats.best)
pylab.text(0.01, 0.95, vstats.label, zorder=2,
backgroundcolor=(1, 1, 0, 0.2),
verticalalignment='top',
horizontalalignment='left',
transform=pylab.gca().transAxes)
ax.set_yticklabels([])
def _make_fig_colorbar(logp):
import matplotlib as mpl
import pylab
# Option 1: min to min + 4
#vmin=-max(logp); vmax=vmin+4
# Option 1b: min to min log10(num samples)
#vmin=-max(logp); vmax=vmin+log10(len(logp))
# Option 2: full range of best 98%
snllf = pylab.sort(-logp)
vmin, vmax = snllf[0], snllf[int(0.98*(len(snllf)-1))] # robust range
# Option 3: full range
#vmin,vmax = -max(logp),-min(logp)
fig = pylab.gcf()
ax = fig.axes[-1]
cmap = mpl.cm.copper
# Set the colormap and norm to correspond to the data for which
# the colorbar will be used.
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
# ColorbarBase derives from ScalarMappable and puts a colorbar
# in a specified axes, so it has everything needed for a
# standalone colorbar. There are many more kwargs, but the
# following gives a basic continuous colorbar with ticks
# and labels.
class MinDigitsFormatter(mpl.ticker.Formatter):
def __init__(self, low, high):
self.delta = high - low
def __call__(self, x, pos=None):
return format_value(x, self.delta)
ticks = () #(vmin, vmax)
formatter = MinDigitsFormatter(vmin, vmax)
cb = mpl.colorbar.ColorbarBase(ax, cmap=cmap, norm=norm,
ticks=ticks, format=formatter,
orientation='vertical')
#cb.set_ticks(ticks)
#cb.set_ticklabels(labels)
#cb.set_label('negative log likelihood')
cbar_box = ax.get_position().bounds
fig.text(cbar_box[0],cbar_box[1],
'{:.3G}'.format(vmin), va='top')
fig.text(cbar_box[0], cbar_box[1]+cbar_box[3],
'{:.3G}'.format(vmax), va='bottom')
return vmin, vmax, cmap
def _make_logp_histogram(values, logp, nbins, ci, weights, cbar):
from numpy import (ones_like, searchsorted, linspace, cumsum, diff,
argsort, array, hstack, exp)
if weights is None:
weights = ones_like(logp)
# TODO: values are being sorted to collect stats and again to plot
idx = argsort(values)
values, weights, logp = values[idx], weights[idx], logp[idx]
#open('/tmp/out','a').write("ci=%s, range=%s\n"
# % (ci,(min(values),max(values))))
edges = linspace(ci[0], ci[1], nbins+1)
idx = searchsorted(values[1:-1], edges)
weightsum = cumsum(weights)
heights = diff(weightsum[idx])/weightsum[-1] # normalized weights
import pylab
vmin, vmax, cmap = cbar
cmap_steps = linspace(vmin, vmax, cmap.N+1)
bins = [] # marginalized maximum likelihood
for h, s, e, xlo, xhi \
in zip(heights, idx[:-1], idx[1:], edges[:-1], edges[1:]):
if s == e:
continue
pv = -logp[s:e]
pidx = argsort(pv)
pw = weights[s:e][pidx]
x = array([xlo, xhi], 'd')
y = hstack((0, cumsum(pw)))
z = pv[pidx][:, None]
# centerpoint, histogram height, maximum likelihood for each bin
bins.append(((xlo+xhi)/2, y[-1], exp(vmin-z[0])))
if len(z) > cmap.N:
# downsample histogram bar according to number of colors
pidx = searchsorted(z[1:-1].flatten(), cmap_steps)
if pidx[-1] < len(z)-1:
pidx = hstack((pidx, -1))
y, z = y[pidx], z[pidx]
pylab.pcolormesh(x, y, z, vmin=vmin, vmax=vmax, cmap=cmap)
# Check for broken distribution
if not bins:
return
centers, height, maxlikelihood = array(bins).T
# Normalize maximum likelihood plot so it contains the same area as the
# histogram, unless it is really spikey, in which case make sure it has
# about the same height as the histogram.
maxlikelihood *= np.sum(height)/np.sum(maxlikelihood)
hist_peak = np.max(height)
ml_peak = np.max(maxlikelihood)
if ml_peak > hist_peak*1.3:
maxlikelihood *= hist_peak*1.3/ml_peak
pylab.plot(centers, maxlikelihood, '-g')
## plot marginal gaussian approximation along with histogram
#def G(x, mean, std):
# return np.exp(-((x-mean)/std)**2/2)/np.sqrt(2*np.pi*std**2)
## TODO: use weighted average for standard deviation
#mean, std = np.average(values, weights=weights), np.std(values, ddof=1)
#pdf = G(centers, mean, std)
#pylab.plot(centers, pdf*np.sum(height)/np.sum(pdf), '-b')
def _make_var_histogram(values, logp, nbins, ci, weights):
# Produce a histogram
hist, bins = np.histogram(values, bins=nbins, range=ci,
#new=True,
density=True, weights=weights)
# Find the max likelihood for values in each bin
edges = np.searchsorted(values, bins)
histbest = [np.max(logp[edges[i]:edges[i+1]])
if edges[i] < edges[i+1] else -np.inf
for i in range(nbins)]
# scale to marginalized probability with peak the same height as hist
histbest = np.exp(np.asarray(histbest) - max(logp)) * np.max(hist)
import pylab
# Plot the histogram
pylab.bar(bins[:-1], hist, width=bins[1]-bins[0])
# Plot the kernel density estimate
#density = KDE1D(values)
#x = linspace(bins[0],bins[-1],100)
#pylab.plot(x, density(x), '-k')
# Plot the marginal maximum likelihood
centers = (bins[:-1]+bins[1:])/2
pylab.plot(centers, histbest, '-g')