Rheolef  7.1
an efficient C++ finite element environment
navier_stokes_taylor_newton_dg.cc
Go to the documentation of this file.
1 #include "rheolef.h"
26 using namespace rheolef;
27 using namespace std;
28 #include "taylor.h"
29 #include "stokes_dirichlet_dg.icc"
30 #include "inertia.h"
31 #include "navier_stokes_dg.h"
32 int main(int argc, char**argv) {
33  environment rheolef (argc, argv);
35  geo omega (argv[1]);
36  string approx = (argc > 2) ? argv[2] : "P1d";
37  Float Re = (argc > 3) ? atof(argv[3]) : 100;
38  Float tol = (argc > 4) ? atof(argv[4]) : eps;
39  size_t max_iter = (argc > 5) ? atoi(argv[5]) : 100;
40  string restart = (argc > 6) ? argv[6] : "";
41  navier_stokes_dg F (Re, omega, approx);
42  navier_stokes_dg::value_type xh = F.initial (restart);
43  int status = damped_newton (F, xh, tol, max_iter, &derr);
44  dout << catchmark("Re") << Re << endl
45  << catchmark("u") << xh[0]
46  << catchmark("p") << xh[1];
47  return status;
48 }
see the Float page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
Definition: catchmark.h:67
see the environment page for the full documentation
Definition: environment.h:104
odiststream dout(cout)
see the diststream page for the full documentation
Definition: diststream.h:430
odiststream derr(cerr)
see the diststream page for the full documentation
Definition: diststream.h:436
The inertia term of the Navier-Stokes equation with the discontinuous Galerkin method – di Pietro & E...
This file is part of Rheolef.
int damped_newton(const Problem &P, const Preconditioner &T, Field &u, Real &tol, Size &max_iter, odiststream *p_derr=0)
see the damped_newton page for the full documentation
The Navier-Stokes equations with the discontinuous Galerkin method – class header.
int main(int argc, char **argv)
rheolef - reference manual
The Stokes problem with Dirichlet boundary condition by the discontinuous Galerkin method – solver fu...
value_type initial(string restart) const
Eigen::Matrix< field, 2, 1 > value_type
The Taylor benchmark – right-hand-side and boundary condition.
Float epsilon